Molecular Pathology of Lymphoma: Focus on B-cell lymphomas

XXIV International Academy of Pathology – Arab Division (IAPAD)
Update on Molecular Pathology
Khartoum, Sudan – December 7, 2012

Adam Bagg, MD
Director, Hematology
Medical Director, Clinical Cancer Cytogenetics
University of Pennsylvania
Application of molecular studies to diagnosis of hematopoietic neoplasms
Application of molecular studies to diagnosis of hematopoietic neoplasms
what
Molecular targets
Molecular targets

- Rearrangements
 - physiologic
 - pathologic
Molecular targets

- **Rearrangements**
 - physiologic
 - pathologic

- **Somatic recombination (V-D-J joining)**, addition of N and P nucleotides, transcription and RNA processing in three B cell clones

- **creation of a novel chimeric gene**
 - upregulated/overexpression of a protooncogene

- **t(9;22) ⇒ bcr-abl**
- **t(8;14) ⇒ IgH + c-myc**

what

Rearrangements
- **physiologic**
- **pathologic**

Molecular targets

what

Rearrangements
- **physiologic**
- **pathologic**

Molecular targets

what

Rearrangements
- **physiologic**
- **pathologic**

Molecular targets

what

Rearrangements
- **physiologic**
- **pathologic**

Molecular targets
Molecular targets

- Rearrangements
 - physiologic
 - pathologic
A creation of a novel chimeric gene upregulated/overexpression of a protooncogene

t(9;22) → bcr-abl
t(8;14) → IgH + c-myc

Molecular targets

• Rearrangements
 - physiologic
 - pathologic

• Mutations

Rearrangements - physiologic
- pathologic

Mutations

creation of a novel chimeric gene

upregulated/overexpression of a protooncogene

V1 V2 Vn D1-n J1-n C

Somatic recombination (V-D-J joining), addition of N and P nucleotides, transcription and RNA processing in three B cell clones

V1 D1 J1 C V2 D3 J5 C Vn D2 J2 C

N/P nucleotides N/P nucleotides N/P nucleotides

homogeneity vs heterogeneity

present vs absent

qualitative
quantitative

t(9;22) ⇒ bcr-abl
t(8;14) ⇒ IgH + c-myc
Molecular targets

- **Rearrangements**
 - physiologic
 - pathologic

- **Mutations**

- **Additions**

- **Losses**
 - deletions
 - silencing

what

- **Rearrangements**
 - physiologic
 - pathologic

- **Mutations**

- **Additions**

- **Losses**
 - deletions
 - silencing

Creation of a novel chimeric gene

Upregulated/overexpression of a protooncogene

t(9;22) → bcr-abl

t(8;14) → IgH + c-myc
Major methodologies

Cytogenetics

Molecular genetics

FISH CGH SKY
Major methodologies

Cytogenetics

- FISH
- CGH
- SKY

Molecular genetics

SB
Major methodologies

Cytogenetics

- FISH
- CGH
- SKY

Molecular genetics

- SB
- PCR
Major methodologies

Cytogenetics

FISH, CGH, SKY

Molecular genetics

SB, PCR, ?CHIP
Major methodologies

Cytogenetics

FISH CGH SKY

Molecular genetics

SB PCR ?CHIP NGS!
Advantages of molecular methods

<table>
<thead>
<tr>
<th></th>
<th>Karyotypic</th>
<th>Molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh material</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Viable cells</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dividing cells</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Average TAT</td>
<td>~1 week</td>
<td>~2 days</td>
</tr>
<tr>
<td>Submicroscopic</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>5-10%</td>
<td>0.001-1%</td>
</tr>
<tr>
<td>Numeric</td>
<td>Yes</td>
<td>No*</td>
</tr>
</tbody>
</table>

* CGH → yes
why
why
Major indications for molecular testing
Major indications for molecular testing

why
Antigen receptors

B-cell

T-cell

Immunoglobulin

T-cell receptor

Antigen
IGH@ gene rearrangement and PCR

V_H segments

D_H segments

J_H segments

C_H segments
1. DJ rearrangement

IGH@ gene rearrangement and PCR
IGH@ gene rearrangement and PCR

1. DJ rearrangement
IGH@ gene rearrangement and PCR

1. **DJ rearrangement**

 - **V_H segments:** 1 2 3 4 5 45
 - **D_H segments:** 1 2 3
 - **J_H segments:** 5 6
 - **C_H segments:** μδγαε
IGH@ gene rearrangement and PCR

1. **DJ rearrangement**

2. **V-DJ rearrangement**
IGH@ gene rearrangement and PCR

1. **DJ rearrangement**

 - **V_H segments**
 - 1 2 3 4 5 45
 - **D_H segments**
 - 1 2 3
 - **J_H segments**
 - 5 6
 - **C_H segments**
 - μδγαε

2. **V-DJ rearrangement**

 - 1 2
 - 3 5 6
 - μδγαε
IGH@ gene rearrangement and PCR

1. DJ rearrangement

2. V-DJ rearrangement
IGH@ gene rearrangement and PCR

1. DJ rearrangement
2. V-DJ rearrangement
3. High power view
IGH@ gene rearrangement and PCR

1. DJ rearrangement

2. V-DJ rearrangement

3. High power view

VH segments

1 2 3 4 5 45

DH segments

1 2 3 5 6

JH segments

5 6

CH segments

μδγαε

VHsegments

1 2 3 4 5

DHSegments

1 2 3

JHsegments

5 6

CHsegments

μδγαε

IGH gene rearrangement and PCR

CDRs, FRs

L FR I CDR I FR II CDR II FR III CDR III FR IV
IGH@ gene rearrangement and PCR

1. **DJ rearrangement**
 - V\(_H\) segments
 - 1 2 3 4 5 45
 - D\(_H\) segments
 - 1 2 3
 - J\(_H\) segments
 - 5 6
 - C\(_H\) segments
 - μ\(\delta\)αε

2. **V-DJ rearrangement**
 - μ\(\delta\)αε

3. **High power view**
 - CDRs, FRs and primers

V\(_H\)2

- L FR I CDR I FR II CDR II FR III CDR III FR IV
IGH@ gene rearrangement and PCR

1. DJ rearrangement

2. V-DJ rearrangement

3. High power view

VH segments	DH segments	JH segments	CH segments
1 2 3 4 5 45 | 1 2 3 | 5 6 | μδγαε

1. DJ rearrangement

2. V-DJ rearrangement

3. High power view

CDRs, FRs and primers
IGH@ gene rearrangement and PCR

gel-based PCR product detection

<table>
<thead>
<tr>
<th>Size</th>
<th>Poly</th>
<th>Mono</th>
<th>Mono</th>
<th>Mono</th>
<th>Poly</th>
<th>Neg</th>
</tr>
</thead>
</table>

[Image of a gel with bands indicating PCR products]
IGH@ gene rearrangement and PCR

capillary electrophoresis-based PCR product detection

reactive

neoplastic
Antigen receptor gene rearrangements

Useful in the following situations:

• atypical lymphoproliferations
• limited tissue
• equivocal immunophenotype (??)
• T-cell lymphoproliferations
• baseline for MRD

BM:
• precursor B-cells

But not that helpful in:
• diagnosing specific entities
• unraveling the heterogeneity
Specific lymphoma categories ...
Follicular lymphoma: t(14;18) and BCL-2
Follicular lymphoma: t(14;18) and BCL-2

- only $\sim 85\%$ t(14;18)+
Follicular lymphoma: t(14;18) and BCL-2

- only \(~85\%\) t(14;18)+
- not all t(14;18)+ cases = FL
Follicular lymphoma: t(14;18) and BCL-2

- only ~85% t(14;18)+
- not all t(14;18)+ cases = FL

- FL vs RFH (IHC ✓)
- FL vs other SBCL (IHC ×)
Follicular lymphoma: t(14;18) and BCL-2

- only ~85% t(14;18)+
- not all t(14;18)+ cases = FL

- FL vs RFH (IHC ✔)
- FL vs other SBCL (IHC ✗)

- rare cases:
 - t(14;18)+; IHC-
 - point mutation
Follicular lymphoma: t(14;18) and BCL-2

- only ~85% t(14;18)+
- not all t(14;18)+ cases = FL
- FL vs RFH (IHC ✔)
- FL vs other SBCL (IHC ✗)
- rare cases:
 - t(14;18)+; IHC-
 - point mutation

- t(14;18) PCR preferable to IGH PCR
Follicular lymphoma: t(14;18) and BCL-2

• only ~85% t(14;18)+
• not all t(14;18)+ cases = FL

• FL vs RFH (IHC ✔)
• FL vs other SBCL (IHC ✗)

• rare cases:
 - t(14;18)+; IHC-
 - point mutation

• t(14;18) PCR preferable to IGH PCR

• of the ~15% t(14;18)-negative cases:

 ↑ copies chromosome 18/BCL-2 → BCL-2+

 t(BCL-6) → BCL-2- (MUM1+, grade 3)
Follicular lymphoma: t(14;18) and BCL-2

- only ~85% t(14;18)+
- not all t(14;18)+ cases = FL
- FL vs RFH (IHC ✔)
- FL vs other SBCL (IHC ✗)
- rare cases:
 - t(14;18)+; IHC-
 - point mutation
- t(14;18) PCR preferable to IGH PCR
- of the ~15% t(14;18)-negative cases:
 - copies chromosome 18/BCL-2 → BCL-2+
 - t(BCL-6) → BCL-2- (MUM1+, grade 3)

t(14;18)-negative FL:
- skin, testicle, pediatric, grade 3B,
- diffuse inguinal (del1p), blastoid
BCL2 gene rearrangements

BCL2 on 18q21

IGH on 14q32

1

2

3

J

J_H
BCL2 gene rearrangements

BCL2 on 18q21

IGH on 14q32
BCL2 gene rearrangements

BCL2 on 18q21

1

2

3

IGH on 14q32

J_H

MBR

MCR

PCR [~75%]
BCL2 gene rearrangements

BCL2 on 18q21

IGH on 14q32

VCR

MBR

ICR

MCR

PCR (~75%)
BCL2 gene rearrangements

BCL2 on 18q21

1

VCR

2

MBR

3

ICR

MCR

IGH on 14q32

J_H

PCR [~75%]

Southern blot
BCL2 gene rearrangements

BCL2 on 18q21

IGH on 14q32

VCR

MBR

ICR

MCR

PCR [~75%]

Southern blot

FISH
BCL2 gene rearrangements

BCL2 on 18q21

1

2

3

VCR

MBR

ICR

MCR

IGH on 14q32

J_H

PCR [~75%]

Southern blot

FISH

Classical cytogenetics
Chronic lymphocytic leukemia/SLL
CLL: Unraveling the heterogeneity

Conventional parameters

Novel parameters
CLL: Unraveling the heterogeneity

Novel parameters

- Cytogenetics
- Cell of origin
Cytogenetics
Cytogenetics

del(13q14) ~55%
del(11q22) ~18%
+12 ~16%
del(17p13) ~7%
Cytogenetics: molecular

- del(13q14)
- del(11q22)
- +12
- del(17p13)

Approximate frequencies:
- del(11q22): ~18%
- +12: ~16%
- del(17p13): ~7%
Cytogenetics: molecular

- del(13q14)
- del(11q22)
- +12
- del(17p13)
- ATM
 - ~16%
- ?miRNA
 - ~7%
Cytogenetics: molecular

del(13q14)
?miRNA

del(11q22)
ATM

+12
? CDK4

del(17p13)
~7%
Cytogenetics: molecular

- del(13q14)
- del(11q22)
- +12
- del(17p13)
- ATM
- p53
- ?CDK4
- ?miRNA
Prognostication by cytogenetics

Copyright © 2000, Massachusetts Medical Society. All rights reserved.
Prognostication by cytogenetics

Copyright © 2000, Massachusetts Medical Society. All rights reserved.
Prognostication by cytogenetics

del(11q) SF3B1 trisomy 12 NOTCH1
Cell of origin

The dogma

CLL is a neoplasm of naïve B-cells ...
Cell of origin

The dogma

CLL is a neoplasm of naïve B-cells ...

... but a KARma has run over this DOGma
Chronic lymphocytic leukemia

* pre-GC
 - non-mutated IgH
 - “naïve”
 - poorer prognosis

♦ post-GC
 - mutated IgH
 - memory
 - better prognosis
Impact of SHM on prognosis

Chronic lymphocytic leukemia

* pre-GC
 - non-mutated IgH
 - “naïve”
 - poorer prognosis
 - (CD38+)

* post-GC
 - mutated IgH
 - memory
 - better prognosis
 - (CD38-)
Chronic lymphocytic leukemia

pre-GC
- non-mutated IgH
- “naïve”
- poorer prognosis

◆ post-GC
- mutated IgH
- memory
- better prognosis

↑ZAP70
Chronic lymphocytic leukemia

- **pre-GC**
 - non-mutated IgH
 - “naïve”
 - poorer prognosis

- **post-GC**
 - mutated IgH
 - memory
 - better prognosis

↑ ZAP70

?↓ miR15/16
ZAP70 by IHC on PB

H&E | CD79a | CD3
ZAP70 by IHC on PB
<table>
<thead>
<tr>
<th></th>
<th>H&E</th>
<th>CD79a</th>
<th>CD3</th>
<th>ZAP70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZAP70 by IHC on PB

SHM-

SHM+
Diffuse Large B-cell Lymphoma (DLBCL)

- **Morphologic:**
 - centroblastic
 - immunoblastic
 - T-cell/histiocyte-rich
 - anaplastic
 - plasmablastic
 - lymphomatoid granulomatosis type

- **Clinicopathologic:**
 - primary mediastinal (thymic) large B-cell lymphoma
 - primary CNS lymphoma
 - primary effusion lymphoma
 - primary cutaneous large B-cell lymphoma (of the leg!)
 - intravascular large cell lymphoma
Separation of DLBLs into two broad groups:
- germinal center
- activated B-cell
That’s all very nice and impressive, but ...
That’s all very nice and impressive, but ...

- Highly complex (10,000’s of genes)
- Expensive
- Need fresh/frozen tissue
That’s all very nice and impressive, but ...

- Highly complex (10,000’s of genes)
- Expensive
- Need fresh/frozen tissue

So, what’s a humble, information-overloaded pathologist to do?
That’s all very nice and impressive, but ...

- Highly complex (10,000’s of genes)
- Expensive
- Need fresh/frozen tissue

So, what’s a humble, information-overloaded pathologist to do?

- Wait ...
 ... for the dust to settle ...
 ... and it might be ...
 ... and use IHC ... (and only 3 markers at that!)
CD10

GCB

BCL6

non-GCB
CD10

GCB

non-GCB

BCL6

MUM1
CD10

GCB

BCL2

non-GCB

FOXP1

BCL6

MUM1

GCET1
Pitfalls and caveats: IG and TCR PCR

“False” positives
“False” positives
- contamination
Pitfalls and caveats: IG and TCR PCR

“False” positives

- contamination
- pseudoclonality (small biopsies)
Pitfalls and caveats: IG and TCR PCR

“False” positives
- contamination
- pseudoclonality (small biopsies)
- reactive/inflammatory scenarios
 - H. pylori gastritis (but ...)
 - Hepatitis C (but ...)
 - Viral infections (HIV, mumps, EBV, CMV)
 - Sjögren syndrome
 - Rheumatoid arthritis
Pitfalls and caveats: IG and TCR PCR

“False” positives

- contamination
- pseudoclonality (small biopsies)
- reactive/inflammatory scenarios
 - H. pylori gastritis (but ...)
 - Hepatitis C (but ...)
 - Viral infections (HIV, mumps, EBV, CMV)
 - Sjögren syndrome
 - Rheumatoid arthritis
- canonical (TCR_{\gamma})
“False” positives

- contamination
- pseudoclonality (small biopsies)
- reactive/inflammatory scenarios
 - H. pylori gastritis (but ...)
 - Hepatitis C (but ...)
 - Viral infections (HIV, mumps, EBV, CMV)
 - Sjögren syndrome
 - Rheumatoid arthritis
- canonical (TCRγ)
- immune reconstitution post BMT
- immune response to tumor
Pitfalls and caveats: IG and TCR PCR

“False” positives
- contamination
- pseudoclonality (small biopsies)
- reactive/inflammatory scenarios
 - H. pylori gastritis (but ...)
 - Hepatitis C (but ...)
 - Viral infections (HIV, mumps, EBV, CMV)
 - Sjögren syndrome
 - Rheumatoid arthritis
- canonical (TCRγ)
- immune reconstitution post BMT
- immune response to tumor
- “clonal dermatitis”
Pitfalls and caveats: IG and TCR PCR

False negatives
Pitfalls and caveats: IG and TCR PCR

False negatives

- Preanalytic variables
- Technical
- Biologic
Pitfalls and caveats: IG and TCR PCR

False negatives

- Preanalytic variables [degradation, fixation, representative sampling]
- Technical
- Biologic

- Somatic hypermutation (primary/ongoing)
 - (follicular lymphoma, myeloma)
- IgH deletions (~1/10 lymphomas)

- Ongoing rearrangements at relapse
- False negatives

- IG and TCR PCR
Pitfalls and caveats: IG and TCR PCR

False negatives

- Preanalytic variables [degradation, fixation, representative sampling]
- Technical
 - consensus primers
 - using CDR3 IGH primers only
- Biologic
False negatives

- Preanalytic variables [degradation, fixation, representative sampling]
- Technical
 - consensus primers
 - using CDR3 IGH primers only
- Biologic
 - pre GC/
 - precursor B-cells
 - intra/post GC

Pitfalls and caveats: IG and TCR PCR
False negatives

- Preanalytic variables [degradation, fixation, representative sampling]
- Technical
 - consensus primers
 - using CDR3 IGH primers only
- Biologic
 - pre GC/
 - precursor B-cells
 - intra/post GC
 - partial DJ
 - oligoclonal
 (~1/3 precursor B-ALL)
 - ongoing rearrangements at relapse

Pitfalls and caveats: IG and TCR PCR
False negatives

- Preanalytic variables [degradation, fixation, representative sampling]
- Technical

 consensus primers
 using CDR3 IGH primers only
- Biologic

 pre GC/
 precursor B-cells

 • partial DJ
 • oligoclonal
 (~1/3 precursor B-ALL)
 • ongoing rearrangements at relapse

 intra/post GC

 • somatic hypermutation
 (primary/ongoing)
 (follicular lymphoma, myeloma)
 • IGH deletions
 (~1/10 lymphomas)
The last slide ...

- Powerful ... but one piece of the puzzle
The last slide ...

- Powerful ... but one piece of the puzzle

- Positive result: not always = neoplastic
The last slide ...

- Powerful ... but one piece of the puzzle
- Positive result: not always = neoplastic
- Negative result: not always = not neoplastic
The last slide ...

- Powerful ... but one piece of the puzzle
- Positive result: not always = neoplastic
- Negative result: not always = not neoplastic
- Integrate: with morphologic, immunophenotypic, clinical data
The last slide ...

- Powerful ... but one piece of the puzzle
- Positive result: not always = neoplastic
- Negative result: not always = not neoplastic
- Integrate: with morphologic, immunophenotypic, clinical data
- Decision to perform/ability to interpret: contextual
The last slide ...

- Powerful ... but one piece of the puzzle
- Positive result: not always = neoplastic
- Negative result: not always = not neoplastic
- Integrate: with morphologic, immunophenotypic, clinical data
- Decision to perform/ability to interpret: contextual
- More rational, biologically-based diagnosis: more appropriate, targeted Rx